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Why do we care?

•Despite significant progress in recent years clinical prediction and
stratification of risk in patients remains a challenge

•The focus has shifted from clinical parameters to molecular
markers. e.g. expression of specific genes and selected genomic
abnormalities
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Purpose of the research

•Develop a way of predicting a particular outcome based on several
input features (risk factors)

Examples:

•Clinical Prognosis: Predicting the probability of responding to
treatment in different cancer types
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Our predictions are based on evidence provided by features

• Over-expression of gene or pathway

• Genomic abnormality: amplification

• Genomic abnormality: deletion

Types of outcomes we want to predict

• Response to treatment (e.g. chemo)

• Platinum Status (platinum sensitive or resistant)
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70 Resistant patients vs 156 Sensitive patients

Survival of platinum resistant patients versus
sensitive patients in ovarian cancer
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Platinum Resistant: recurrence of
cancer within the first 6 months
after platinum therapy.

Platinum Sensitive:  No
recurrence of cancer within the
first 6 months after treatment



Nomograms are a graphical way of representing a
classification model
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Ovarian cancer Bayesian nomogram for a specific patient.
Showing 5 out of 12 total single features (current model
used)
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Current model for ovarian cancer has two main issues: features are strongly

correlated and there are a lot of errors made even when sufficient evidence is

available.
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One way of improving these results is using pairs
of features instead of single features
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•Important things to know about dealing with pairs of features:

•The evidence of a pair is not the same as the sum of the
individual evidences.

•Before, we had n features, now we have (n2 – n)/2
possible pairs of features

•Pairs not only perform better, they also have the potential
to uncover interesting



How did I approach this problem?
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The longer the arms of the nomogram, the better the feature



Ovarian cancer pairs work well because they correct each
other’s mistakes and they reinforce each other when correct.
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1+2

1

2

281 Patients

Feature 1: genes down regulated by AKT (oncogene)
Feature 2: genes up regulated by KRAS (oncogene)

Platinum Sensitive Resistant

Intensity of color represents the certainty of the prediction. Red
represents sensitive prediction and blue represents resistant prediction
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Here’s how we visualize pairs of features in a nomogram

Feature 1

Feature 2

State of feature 1

State of feature 2



Ovarian cancer Bayesian nomogram - pairs
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Ovarian cancer pairs show a lesser degree of correlation
than single features
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Comparison of models for ovarian cancer. Both ROC
and Error rate improvement from using pairs
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Model au-ROC Error Rate # of features

Singles 0.595 42.3% 12

Pairs 0.681 30.7% 6 pairs

Platinum Status Correct Incorrect

Resistant 20 15

Sensitive 73 29
Real Outcome

Prediction



Comparison of models for Medulloblastoma
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Model au-ROC Error Rate # of features

A 0.727 32.1% 2

B 0.747 34.6% 3

C 0.802 25.6% 46

D 0.782 25.6% 53

Pairs 0.803 29.5% 5 pairs  + 2 singles



Conclusion
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• Pairs are better at predicting outcome

• The fact that pairs “work together” might uncover interesting
interactions between the features

• Pairs dramatically reduce the correlation in the model

• Naïve Bayesian is a simple approach that physicians can
understand and is as accurate as more complex models



Data Acknowledgement
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Datasets:

•Medulloblastoma Dataset
•Training Set: 94 samples multi-institutional

•Children’s Hospital (Boston)
•Children Oncology Group (COG)
•U of Washington Medical Center
•Children’s Hospital (Texas)
•The Johns Hopkins Medical Center

•Independent test set: 78 samples multi-institutional
•47 samples, Pomeroy et al. 2002
•16 samples, Kool et al. 2008
•15 samples, COG 2009
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Datasets:

•Ovarian Cancer Datasets
•Toothill
•TCGA
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Probabilistic Model

•Conditional Probabilities & Bayes Theorem for independent features:

•Weight of Evidence for target r and state x:
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•Total evidence that feature x provides:



Pair Model
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Computing evidence for pairs

•Very similar to computing the evidence for singles

•Remember Bayes Theorem:

•Total evidence that pair of features x, y provides:


