Combinatorics of *cis*-regulatory elements in osmotic stress response of Ascomycetes.

Aurian García-González

Mentors: Sushmita Roy, Jay Konieczka, Dawn Thompson

Broad Institute- Summer Research Program 2011

August 3, 2011

Question:

Where does phenotypic diversity come from?

Question:

 If their gene content is so similar, why are they so different?

How do we study evolution of gene regulation?

Model system

PNAS Vol. 100, No. 3, pp. 1056-1061, 2003

How do we study evolution of gene regulation?

FEBS Letters 583 pp. 3959-3965, 2009.

Phenotype: osmotic stress

How do we study evolution of gene regulation?

Phenotype: osmotic stress

- Readily tractable experimentally.
- Thoroughly described in S. cerevisiae as Hog1-directed.

1) Perform stress experiments to obtain expression profiles

1) Perform stress experiments to obtain expression profiles

2) Cluster genes to identify

phenomenologs

Clusters with similar expression – regardless of gene content.

1) Perform stress experiments to obtain expression profiles

2) Cluster genes to identify

phenomenologs

Clusters with similar expression – regardless of gene content.

3) What are the *cis*-regulatory elements present in these phenomenologs?

1) Perform stress experiments to obtain expression profiles

2) Cluster genes to identify

phenomenologs

Clusters with similar expression – regardless of gene content.

3) What are the *cis*-regulatory elements present in these phenomenologs?

1) Perform stress experiments to obtain expression profiles

2) Cluster genes to identify phenomenologs

Clusters with similar expression – regardless of gene content.

3) What are the *cis*-regulatory elements present in these phenomenologs?

Use ModuleDigger to find CRMs

ModuleDigger:

Uses motif data for genes in a cluster and computes hierarchical scores for modules.

Use ModuleDigger to find CRMs

ModuleDigger:

Uses motif data for genes in a cluster and computes hierarchical scores for modules.

Geneset specificity score (f_g) for the motifs in each gene

Use ModuleDigger to find CRMs

ModuleDigger:

Uses motif data for genes in a cluster and computes hierarchical scores for modules.

Are they conserved across all species?

Are they conserved across all species?

Motif combinations are conserved in clades

WGD: whole genome duplication

Most induced

RCS1, SIP4

Most repressed

RCS1, SIP4 MBP1, TEC1 MBP1, PDR3

Motif combinations are conserved in clades

WGD: whole genome duplication

S. cerevisiae
S. bayanus
C. glabrata
S. castelli
K. lactis
C. albicans
S. pombe

Most induced

Most induced

RCS1, SIP4

MIG1, MSN2/MSN4 MIG1, ADR1 MSN2/MSN4, ADR1

Most repressed

Most repressed

RCS1, SIP4 MBP1, TEC1 MBP1, PDR3

Motif combinations are conserved in clades

WGD: whole genome duplication

Most induced

Most induced

Most induced

RCS1, SIP4

MIG1, MSN2/MSN4 MIG1, ADR1 MSN2/MSN4, ADR1 RCS1, SIP4 CRZ1, SIP4

Most repressed

Most repressed

Most repressed

RCS1, SIP4 MBP1, TEC1 MBP1, PDR3

RCS1, SIP4

Stress-related regulatory elements co-occur with glucose-related elements

MBP1, TEC1 MBP1, PDR3 MIG1, MISN2/MISN4 MIG1, ADR1 MSN2/MSN4, ADR1

Stress
Glucose Metabolism
Cell-cycle progression
Metabolite transport

Conclusions

 Very few motif pairs were speciesspecific. Combinatorics are conserved in at least two species.

Conclusions

- Very few motif pairs were speciesspecific. Combinatorics are conserved in at least two species.
- The most induced clusters showed more motif pairs than the repressed clusters.

Conclusions

- Very few motif pairs were speciesspecific. Combinatorics are conserved in at least two species.
- The most induced clusters showed more motif pairs than the repressed clusters.
- Glucose responsive elements occur with stress elements.

Future work

• Explore higher order combinations.

Future work

- Explore higher order combinations.
- Develop more sophisticated algorithms to discover significant CRMs.

Future work

- Explore higher order combinations.
- Develop more sophisticated algorithms to discover significant CRMs.
- Correlate trans interactions with observed phenotype.

Acknowledgements

Mentors:

Sushmita Roy Jay Konieczka Dawn Thompson Aviv Regev Regev Lab

SRPG:

Eboney Smith
Bruce Birren
Lori Thomae
Nicole Edmonds
Broad staff

