Genome-scale CRISPR-Cas9 knockout screening in human cells.

Science
Authors
Keywords
Abstract

The simplicity of programming the CRISPR (clustered regularly interspaced short palindromic repeats)-associated nuclease Cas9 to modify specific genomic loci suggests a new way to interrogate gene function on a genome-wide scale. We show that lentiviral delivery of a genome-scale CRISPR-Cas9 knockout (GeCKO) library targeting 18,080 genes with 64,751 unique guide sequences enables both negative and positive selection screening in human cells. First, we used the GeCKO library to identify genes essential for cell viability in cancer and pluripotent stem cells. Next, in a melanoma model, we screened for genes whose loss is involved in resistance to vemurafenib, a therapeutic RAF inhibitor. Our highest-ranking candidates include previously validated genes NF1 and MED12, as well as novel hits NF2, CUL3, TADA2B, and TADA1. We observe a high level of consistency between independent guide RNAs targeting the same gene and a high rate of hit confirmation, demonstrating the promise of genome-scale screening with Cas9.

Year of Publication
2014
Journal
Science
Volume
343
Issue
6166
Pages
84-7
Date Published
2014 Jan 03
ISSN
1095-9203
URL
DOI
10.1126/science.1247005
PubMed ID
24336571
PubMed Central ID
PMC4089965
Links
Grant list
DP1 MH100706 / MH / NIMH NIH HHS / United States
R01 DK097768 / DK / NIDDK NIH HHS / United States
1DP1-MH100706 / DP / NCCDPHP CDC HHS / United States
1R01-DK097768 / DK / NIDDK NIH HHS / United States